@ CCM Code - Embedded Vision Engineering

Embedded Vision Hardware Guide
(2025)

Choosing the Right Platform for Real-Time Edge Vision

1. Introduction: Why Hardware Choice

Matters

Running computer vision at the edge is fundamentally different from running models

in the cloud.
Embedded hardware introduces hard constraints:

e Memory limits (RAM measured in MB, not GB)

e Strict power budgets (battery-powered or thermally constrained systems)
¢ Real-time performance requirements (20-60 FPS)

e Sensor and driver stability

e Latency critical loops

This guide compares the three most common platforms used to build embedded

vision systems in 2025:

e ESP32-S3 — Microcontroller CV
e NVIDIA Jetson — High-performance edge Al
e Raspberry Pi — Linux-based prototyping + mid-tier CV

Each serves a very different purpose.

Page |

@ CCM Code - Embedded Vision Engineering

2. Quick Comparison Table (2025)

Feature

Compute Class

CPU

RAM

Al Accel

Camera Input

Typical FPS

Typical Use
Cases

Power

Price

Latency Profile

ESP32-S3

Microcontroller (MCU)

Dual-core Xtensa

512KB-8MB +
PSRAM

None (TinyML only)

Parallel (DVP)

10-25 FPS (QVGA)

Low-power CV, simple
logic

150-300 mW

$10-$25

Very stable,
MCU-tight loops

Jetson Orin / Nano

Edge Al Computer

ARM + CUDA GPU

4GB-16GB

GPU + Tensor Cores

MIPI/CSI, USB

30-120 FPS (HD)

Robotics, tracking,
complex CV

10-20 W

$150-$599

High throughput,
accelerated

Raspberry Pi 5

SBC / Mid-tier

Quad-core ARM

4GB-8GB

Optional HAT (Hailo)

CSl, USB

15-60 FPS

Prototyping,
mid-level pipelines

5-10 W

$70-$120

Good, but more jitter

@ CCM Code - Embedded Vision Engineering

Page 2

3. ESP32-S3 — Ultra-Low-Power
Embedded CV

The ESP32-S3 is ideal for microcontroller-level vision, where:

Power is limited

Models must be tiny

Deterministic loops matter
Resolution is 160%x120 — 320x240

Built-in camera interface (DVP)

SIMD acceleration

Very low power

Bare-metal / FreeRTOS deterministic timing
Excellent for thresholds, ROI logic, blob detection
Can run TinyML inference

No GPU

Very small RAM

No high resolution

Not suitable for YOLO, deep tracking, or multi-stage heavy pipelines

Smart sensors

Line/marker tracking

Trigger logic

Embedded perception for low-cost robotics
Proof-of-concept microcontroller CV systems

This directly aligns with your ESP32 repo:

ccm-esp32-vision-node (Camera bring-up + CV pipeline).

@ CCM Code - Embedded Vision Engineering

Page 3

4. NVIDIA Jetson — Heavy CV +
Real-Time Al

Jetson is the gold standard for high-performance embedded vision.

GPU + Tensor Cores

Optimized for deep learning (CUDA + TensorRT)
Multiple camera streams

High-resolution, high-FPS processing

Suitable for robotics, drones, industrial edge Al

Highest power usage

More expensive

Requires Linux + driver management
Thermal constraints in fanless deployments

Robotics teams needing real-time detection/tracking
Multi-stage pipelines

YOLO, segmentation, OCR

Edge analytics without cloud dependency

This matches your Jetson repo:

ccm-edge-cv-pipeline (OpenCV + C++17 high-performance pipeline).

@ CCM Code - Embedded Vision Engineering

Page 4

5. Raspberry Pi — The Middle Ground

Raspberry Pi remains the most popular prototyping platform.

e Linux environment

e Affordable

e (Good community support

e Adds flexibility with USB cameras and MIPI CSI
e Optional Al accelerators (Hailo / Coral USB TPU)

¢ Not as deterministic as microcontrollers
e Not as powerful as Jetson

e Some thermal throttling without a fan

e Camera drivers vary in stability

e Early R&D prototypes
e Edge CV without GPU
e YOLO Lite / TFLite runtimes
e Lower-power robotics

@ CCM Code - Embedded Vision Engineering

Page 5

6. Which Platform Should You Choose?

(Decision Guide)

e You need lowest power

e Your logic is simple (thresholds, ROI, blob detection)
e You need predictable timing

e Cost must stay under $30

ESP32-S3 pipeline:

e You need real-time detection or tracking

e You need YOLO or modern CNN models

e You're building a robotics or automation system
e Latency is critical and FPS must stay high

Jetson pipeline:

e You're prototyping before scaling

e You don’t need GPU acceleration

e Your budget is tight

e You want a flexible Linux environment

@ CCM Code - Embedded Vision Engineering

Page 6

Power vs Performance
3.00¢ Fesn

2.75[

2.501

M

M

(9,
T

Raspberry Pi

Performance
s
o
=}

=
~l
w

-

n

o
T

1.25¢

1.00} ESP32-53

1.0 15 2.0 2.5 3.0 35 2.0
Power

CCM Code - Embedded Vision Engineering

Page 7

7. Example Applications

Use Case

Object tracking for robotics

Line following or color detection on a
robot

Smart camera with cloud reporting

Industrial inspection

Real-time sports analytics

Low-cost loT sensor with simple CV

Recommended Hardware

Jetson Orin / Nano

ESP32-S3

ESP32-S3 + Pi

Jetson

Jetson

ESP32-S3

@ CCM Code - Embedded Vision Engineering

Page 8

8. CCM Code Recommendations (Based
on 2025 Industry Trends)

e Based on the 2025 Embedded Vision market analysis:
Jetson platforms are dominating robotics, drones, and Industry 4.0
e Microcontroller vision (ESP32-S3) is exploding thanks to TinyML
e Raspberry Pi remains the fastest prototyping route for early-stage teams

Tier 1: Jetson for high-performance real-time CV
Tier 2: ESP32-S3 for peripheral low-power vision sensors

Ready to Start?

You don't need to build the pipeline from scratch. We've already written the optimized
kernels for you.

Get the Software:

e ESP32 Vision Node: https://github.com/CahillMeyer/ccm-esp32-vision-node
e Jetson Edge Pipeline: https://github.com/CahillMeyer/ccm-edge-cv-pipeline

Build faster with performance-driven SDKs from CCMCode.

@ CCM Code - Embedded Vision Engineering

Page 9

